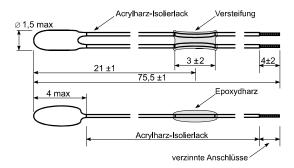


Leistungsmerkmale

- Weiter Messbereich -40° bis 100° C
- ▶ Extrem schnell, Ansprechzeit 0,7 Sekunden
- ▶ Offset bei 37 °C eng toleriert, ±0,2 %
- Austauschbar ohne Rekalibrierung
- **▶** Hohe Empfindlichkeit
- **▶** Einfache Auswertungselektronik
- Hervorragende Langzeitstabilität

Typische Anwendungsgebiete


- Medizintechnik
- Industrielle Messtechnik
- Temperaturfühler
- Gebäudetechnik
- Klimatechnik

Eigenschaften

Der NTC Temperatursensor SEMI 833 ET wurde speziell zur Verwendung in elektronischen Präzisionsthermometern, beispielsweise für den medizinischen Bereich ("Fieberthermometer") entwickelt. Das Bauteil ist auch hervorragend für langzeitstabile, industrielle Thermometer geeignet, die auch geeicht werden können.

Die Temperatursensoren sind so eng toleriert, dass in vielen Applikationen ausreichende Messgenauigkeit ohne Temperaturkalibrierung erreicht werden kann. Bei höheren Genauigkeitsansprüchen reicht in der Regel eine Einpunktkalibrierung aus.

Technische Daten

Präzisions Temperatursensor SEMI833-ET				
Messprinzip	NTC			
Messbereich	-40 100 °C			
Nenn-Widerstand bei 37 °C	min. 48561 Ω max. 51265 Ω			
Widerstandstoleranz bei 37 °C	±0,2 % *			
Gain-Toleranz R ₃₀ /R ₄₅	±1 %			
Langzeitstabilität	besser 1 %			
Ansprechzeit T ₆₆ in Öl	700 ms			
Eigenerwärmung	1,42 °C/mW			
Abmessungen ∅ x L	1,5 x 4 mm			
Isolationswiderstand	100 ΜΩ			
Bestell Nr.	SEMI833ET (18 85 06)			
* Bei größeren Bestellmengen können 12 Klassen selektiert geliefert werden.				

Änderungen der technischen Daten, die dem technologischen Fortschritt dienen, bleiben vorbehalten!

Weitere Informationen im Internet:

www.hygrosens.com

Gegenüber anderen Temperatursensoren bietet wesentlich größere das Bauteil eine Empfindlichkeit, sich wodurch der schaltungstechnische Aufwand verringert. Der Grundwiderstand ist mit 103,6 kOhm bei 20°C sehr hochohmig, dadurch verringert sich die Leistungsaufnahme der Messschaltung und damit Eigenerwärmung. Mit Hilfe Parallelwiderstandes lässt sich die exponentielle Kennlinie des Bauelementes linearisieren.

Aufgrund der geringen thermischen Masse ist das Ansprechverhalten (T_{66}) mit 0,7 sec sehr schnell.

Widerstandstabelle

Der folgenden Widerstandstabelle liegt die ITS90 zugrunde. Die Toleranz der Temperaturwerte beträgt maximal $\pm 0,05^{\circ}$ C. Bei den angegebenen Widerstandswerten handelt es sich um gemittelte Werte aus verschiedenen Fertigungsserien.

Zu dem Sensor ist umfangreiches Datenmaterial als EXCEL-Tabelle erhältlich. Weitere Informationen zu Messschaltungen oder zu Linearisierungsverfahren erhalten Sie auf Anfrage!

Temperatur	Widerstand max	Widerstand typ	Widerstand min	Steigung	Genauigkeit
-40 °C	2841 kΩ	2664 kΩ	2496 kΩ	170 kΩ/°C	-1,0 /+1,0 K
-35 °C	2055 kΩ	1933 kΩ	1817 kΩ	121 kΩ/°C	-1,0 /+1,0 K
-30 °C	1506 kΩ	1421 kΩ	1340 kΩ	86 kΩ/°C	-1,0 /+1,0 K
-25 °C	1112 kΩ	1052 kΩ	995,2 kΩ	62 kΩ/°C	-1,0 /+1,0 K
-20 °C	830,7 kΩ	788,5 kΩ	747,8 kΩ	45,0 kΩ/°C	-1,0 /+1,0 K
-15 °C	624,5 kΩ	594,4 kΩ	565,4 kΩ	33,0 kΩ/°C	-0,9 /+1,0 K
-10 °C	474,5 kΩ	453,0 kΩ	432,0 kΩ	24,3 kΩ/°C	-0,9 /+0,9 K
-5 °C	363,1 kΩ	347,6 kΩ	332,3 kΩ	18,0 kΩ/°C	-0,9 /+0,9 K
0 °C	280,6 kΩ	269,3 kΩ	258,1 kΩ	13,6 kΩ/°C	-0,9 /+0,9 K
5 °C	218,0 kΩ	209,7 kΩ	201,6 kΩ	10,3 kΩ/°C	-0,8 /+0,6 K
10 °C	170,9 kΩ	164,8 kΩ	158,8 kΩ	7,8 kΩ/°C	-0,8 /+0,8 K
15 °C	134,6 kΩ	130,1 kΩ	125,7 kΩ	6,0 kΩ/°C	-0,8 /+0,8 K
20 °C	106,9 kΩ	103,6 kΩ	100,3 kΩ	4,7 kΩ/°C	-0,8 /+0,8 K
25 °C	85,49 kΩ	83,00 kΩ	80,51 kΩ	3,63 kΩ/°C	-0,7 /+0,7 K
30 °C	69,06 kΩ	66,91 kΩ	64,76 kΩ	2,85 kΩ/°C	-0,8 /+0,8 K
35 °C	56,05 kΩ	54,19 kΩ	52,34 kΩ	2,24 kΩ/°C	-0,9 /+0,9 K
40 °C	45,80 kΩ	44,18 kΩ	42,59 kΩ	1,79 kΩ/°C	-0,9 /+1,0 K
45 °C	37,57 kΩ	36,17 kΩ	34,80 kΩ	1,42 kΩ/°C	-1,0 /+1,0 K
50 °C	31,01 kΩ	29,80 kΩ	28,61 kΩ	1,14 kΩ/°C	-1,1 /+1,0 K
55 °C	25,7 kΩ	24,65 kΩ	23,63 kΩ	0,92 kΩ/°C	-1,2 /+1,2 K
60 °C	21,43 kΩ	20,51 kΩ	19,62 kΩ	0,75 kΩ/°C	-1,2 /+1,3 K
65 °C	17,92 kΩ	17,13 kΩ	16,35 kΩ	0,60 kΩ/°C	-1,3 /+1,4 K
70 °C	15,07 kΩ	14,37 kΩ	13,70 kΩ	0,50 kΩ/°C	-1,4 /+1,4 K
75 °C	12,71 kΩ	12,10 kΩ	11,52 kΩ	0,41 kΩ/°C	-1,5 /+1,5 K
80 °C	10,77 kΩ	10,24 kΩ	9,728 kΩ	0,34 kΩ/°C	-1,6 /+1,6 K
85 °C	9,165 kΩ	8,700 kΩ	8,251 kΩ	0,280 kΩ/°C	-1,7 /+1,7 K
90 °C	7,829 kΩ	7,419 kΩ	7,025 kΩ	0,234 kΩ/°C	-1,8 /+1,8 K
95 °C	6,712 kΩ	6,351 kΩ	6,004 kΩ	0,195 kΩ/°C	-1,8 /-1,9 K
100 °C	5,779 kΩ	5,460 kΩ	5,153 kΩ	0,164 kΩ/°C	-1,9 /+2,0 K